Álgebra Lineal Aplicada II (2132074)

PROFESOR

Jorge R. Bolaños Servín

jrbs@xanum.uam.mx

OFICINA

AT-339

ATENCIÓN OFICINA

Lunes 15:00 -16:00 o previa cita

AYUDANTE

Fis. María Fernanda Castro C.

cbi2183052899@izt.uam.mx

OBJETIVO GENERAL DEL CURSO

Que al final del curso el alumno sea capaz de:

- -Utilizar conceptos y métodos de álgebra lineal para plantear y resolver problemas de matemáticas relacionados con física, ingeniería, química y otras disciplinas.
- -Operar con fluidez algoritmos de álgebra lineal en problemas de física, ingeniería y química, evaluando la plausibilidad, validando e interpretando las soluciones.

BIBLIOGRAFÍA

- M.J. ARROYO & S. SILVERSTEIN, "Álgebra Lineal" TRILLAS, 2021.
- R.E. LARSON & B.H. EDWARDS, "Introducción al álgebra lineal", LIMUSA, 2008.
- S.C. CHAPRA & R.P. CANALE, "Métodos Numéricos para Ingenieros", 4a.edición, McGrawHill, 2003.
- A.K Peters, 2005. 4. M. GOLUBITSKY, "Álgebra lineal y ecuaciones diferenciales con uso de Matlab", Cengage Learning, 2001.
- STANLEY I. GROSSMAN, "Álgebra Lineal", McGraw-Hill, 2008

MODO DE EVALUACIÓN

MODO A		
Exámenes parciales	50%	
Taller	25%	
Examen global	25%	

Los exámenes parciales se realizarán los miércoles en las semanas impares 3,7, 9, 11 y el lunes de la semana 5.

Para tener el 25% del taller es indispensable asistir a TODAS las sesiones del taller.

Tolerancia 15 minutos.

El examen global es obligatorio: viernes semana 11.

ESCALA DE CALIFICACIONES

[0, 6)	NA
[6, 7.6)	S
[7.6, 8.6)	В
[8.6 a 10]	MB

Contenido sintético

I. Números Complejos (1.5 semanas)

Definición. Ejemplos. Operaciones. Conjugados. Norma. Polinomios. Representación en el plano. Representación polar. Fórmula de Euler. Raíces de polinomios. Teorema fundamental del álgebra.

II. Espacios Vectoriales (3.5 semanas)

Definición. Ejemplos: \mathbb{R}^n , Espacios de Polinomios, Matrices. Subespacios vectoriales. Subespacios generados y propiedades. Independencia lineal. Bases. Dimensión. Subespacios asociados a matrices. Nucleo e Imagen de una matriz. Teorema de la dimensión para matrices. Ejemplos.

III. Transformaciones lineales (3.5 semanas)

Definición. Ejemplos. Producto interno. Espacios con producto interno. Ortogonalidad. Proyeccion ortogonal. Bases ortonormales. Matrices asociadas a transformaciones lineales. Matrices de cambio de base. Núcleo e imagen de una transformación lineal. Teorema de la dimensión para transformaciones lineales. Aplicaciones: Reflexiones, rotaciones

IV. Vectores y valores propios (3.5 semanas)

Definición. Polinomio característico. Espacios propios. Matriz adjunta. Diagonalización de matrices autoadjuntas. Formas canónicas de Jordan y aplicaciones(si el tiempo lo permite).